Composition of nitrogen in urban residential stormwater runoff: Concentrations, loads, and source characterization of nitrate and organic nitrogen

rebecca.killalea@canberra.edu.au on 01 Mar 2022
Back to citations

All evidence records currently entered in EcoEvidEx for this citation are shown below.
An evidence record consists of an association between two variables, plus information about the nature of that relationship, the study design by which it was observed, and environmental context.
Click on an evidence record below to view or edit the complete evidence record.
Click 'Add evidence' to add a new evidence record for this citation, or copy an existing evidence record by selecting that record then using the 'Duplicate evidence' option.

Author(s)
Jani, J., Yang, Y., Lusk, M. G., & Toor, G. S.
Year
2020
Title
Composition of nitrogen in urban residential stormwater runoff: Concentrations, loads, and source characterization of nitrate and organic nitrogen
Source
PLOS ONE
DOI
10.1371/journal.pone.0229715
Volume
15
Issue
2
Pages
e0229715
ISSN/ISBN
1932-6203
Abstract

Stormwater runoff is a leading cause of nitrogen (N) transport to water bodies and hence one means of water quality deterioration. Stormwater runoff was monitored in an urban residential catchment (drainage area: 3.89 hectares) in Florida, United States to investigate the concentrations, forms, and sources of N. Runoff samples were collected over 22 storm events (May to September 2016) at the end of a stormwater pipe that delivers runoff from the catchment to the stormwater pond. Various N forms such as ammonium (NH4–N), nitrate (NOx–N), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were determined and isotopic characterization tools were used to infer sources of NO3–N and PON in collected runoff samples. The DON was the dominant N form in runoff (47%) followed by PON (22%), NOx–N (17%), and NH4–N (14%). Three N forms (NOx–N, NH4–N, and PON) were positively correlated with total rainfall and antecedent dry period, suggesting longer dry periods and higher rainfall amounts are significant drivers for transport of these N forms. Whereas DON was positively correlated to only rainfall intensity indicating that higher intensity rain may flush out DON from soils and cause leaching of DON from particulates present in the residential catchment. We discovered, using stable isotopes of NO3 –, a shifting pattern of NO3 – sources from atmospheric deposition to inorganic N fertilizers in events with higher and longer duration of rainfall. The stable isotopes of PON confirmed that plant material (oak detritus, grass clippings) were the primary sources of PON in stormwater runoff. Our results demonstrate that practices targeting both inorganic and organic N are needed to control N transport from residential catchments to receiving waters.


Evidence

Cause Effect Response measure type Habitat Country Modified
Hydrology - other (Increase)
Rainfall duration
Water quality - nutrients (nitrogen) (Increase)
Increased particulate organic nitrogen
Mean difference Artificial United States 01-Mar-2022
Hydrology - other (Increase)
Rainfall volume
Water quality - nutrients (nitrogen) (Increase)
Increased particulate organic nitrogen
Mean difference Artificial United States 01-Mar-2022
Hydrology - other (Increase)
Increased antecedent dry days
Water quality - nutrients (nitrogen) (Increase)
Increased particulate organic nitrogen
Mean difference Artificial United States 01-Mar-2022
Hydrology - other (Increase)
Rainfall intensity
Water quality - nutrients (nitrogen) (Increase)
Increased dissolved organic nitrogen
Mean difference Artificial United States 01-Mar-2022
Hydrology - other (Increase)
Increased duration of rainfall
Water quality - nutrients (nitrogen) (Increase)
Increased dissolved inorganic nitrogen
Mean difference Artificial United States 01-Mar-2022
Hydrology - other (Increase)
Increased antecedent dry period
Water quality - nutrients (nitrogen) (Increase)
Increased dissolved inorganic nitrogen
Mean difference Artificial United States 01-Mar-2022
Hydrology - other (Increase)
Increased total rainfall
Water quality - nutrients (nitrogen) (Increase)
Increased dissolved inorganic nitrogen
Mean difference Artificial United States 01-Mar-2022